Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC002 WIRELESS NETWORKS

Sixth Semester, 2016-17 (even Semester)

Course (catalog) description

The course considers digital communication systems and techniques. In this course, we will introduce some of the basic mathematical concepts that will allow us to think in the two "domains" of communications, the time domain and the frequency domain. The course covers the basic types of wireless communication from both a mathematical description and from a blockdiagram system approach.

Compulsory/Elective course : Elective for ECE students

Credit & contact hours :3 & 45

Course Coordinator : Mr.Srinivasan Asst. Professor.

Instructor(s)

Name of the instructor	Class handling	Office location	Office phone	Email (domain: @bharathuniv.ac.in)	Consultation
Mr.Srinivasan	Fourth year	SA006		Srinivasan.etc @bharathuniv.ac.in	9.00-9.50 AM
Ms G.Angelo virgin	Fourth year	SA006			12.45-1.15 PM

Relationship to other courses

Pre-requisites	:	Communication Engineering-I, Random process
Assumed knowledge	:	The students will have a physics and mathematics background obtained at a high school (or equivalent) level. In particular, working knowledge of basic mathematics including differentiation, integration and probability theories are assumed.
Following courses	:	Nil

Syllabus Contents

UNIT 1 WIRELESS LAN

Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum -IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a – Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX

UNIT 2 MOBILE NETWORK LAYER

Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet-Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing

9 HOURS

9 HOURS

UNIT 3 MOBILE TRANSPORT LAYER

TCP enhancements for wireless protocols - Traditional TCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G wireless networks.

UNIT 4 WIRELESS WIDE AREA NETWORK

Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol.

UNIT 5 4G NETWORKS

Introduction – 4G vision – 4G features and challenges - Applications of 4G – 4G Technologies: Multicarrier Modulation, Smart antenna techniques, OFDM-MIMO systems, Adaptive Modulation and coding with time slot scheduler, Cognitive Radio.

Text book(s) and/or required materials

TEXT BOOKS

T1. Jochen Schiller, Mobile Communications, Second Edition, Pearson Education 2012.(Unit I,II,III) T2. Vijay Garg, —Wireless Communications and networking, First Edition, Elsevier 2007.(Unit IV,V)

REFERENCES

R1. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband, Second Edition, Academic Press, 2008.

R2. Anurag Kumar, D.Manjunath, Joy kuri, —Wireless Networking, First Edition, Elsevier 2011.

Computer usage: Nil

Professional component

-	0%
-	0%
-	0%
-	100%
	- - -

Broad area: Communication | Signal Processing | communication |

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

9 HOURS

9 HOURS

9 HOURS

TOTAL 45

The scope of this course is to provide the Wireless networks, protocol stack and standards. This knowledge helps them to acquire fundamentals of 3G Services, its protocols and applications. The overall objective is to introduce the student to the basics of		Correlates to program outcome		
Wireless networks, protocol stack and standards. This course emphasizes:	н	М	L	
 Conversant with the latest 3G/4G and Wi-MAX networks and its architecture. 	а	f	e	
Design and implement wireless network environment for any application using latest wireless protocols and standards	с	а	b	
 Implement different type of applications for smart phones and mobile devices with latest network strategies 	i	а	d	
 Compare and contrast multiple division techniques, mobile communication systems, and existing wireless networks. 	e	g	а	
 Classify network protocols, ad hoc and sensor networks, wireless MANs, LANs and PANs 	e	а	i	
6. Apply wireless ID technologies, in particular RFID work.	f			

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text / Chapter
UNIT 1 V	I VIRELESS LAN	(100,110)	
1.	Introduction-WLAN technologies	No	
2.	Infrared, UHF narrowband, spread spectrum	No	
3.	IEEE802.11: System architecture	No	
4.	IEEE802.11: protocol architecture.	No	-
5.	physical layer, MAC layer	No	[T2] chapter - 5, [R1] chapter -3
6.	802.11b, 802.11a – Hiper LAN	No	
7.	WATM, BRAN, HiperLAN2 – Bluetooth:	No	
8.	Architecture, Radio Layer, Baseband layer Link manager Protocol	No	
9.	security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX	No]
UNIT 2 N	NOBILE NETWORK LAYER		_
10.	Introduction - Mobile IP: IP packet delivery	No	
11.	Agent discovery, tunneling and encapsulation	No]
12.	IPV6- Network layer in the internet	No]

13.	Mobile IP session initiation protocol	No	
14.	mobile ad-hoc network	No	[T2] chapter – 6
15.	ad-hoc network: Routing	No	
16.	Destination Sequence	No	•
17.	distance vector	No	
18.	Dynamic source routing	No	
Session			Text / Chapter
UNIT 3 M	OBILE TRANSPORT LAYER		
19.	TCP enhancements for wireless protocols	No	
20.	Traditional TCP: Congestion control	No	[T2] chapter – 6,
21.	fast retransmit/fast recovery	No	[R1] chapter - 8
22.	Implications of mobility - Classical TCP improvements	No]
23.	Indirect TCP, Snooping TCP, Mobile TCP	No]
24.	Time out freezing	No	
25.	Selective retransmission	No	
26.	Transaction oriented TCP	No	
27.	TCP over 3G wireless networks	No	
UNIT 4 W	IRELESS WIDE AREA NETWORK		
28.	Overview of UTMS Terrestrial Radio access network	No	
29.	UMTS Core network Architecture	No	
30.	3G-MSC	No	
31.	3G-SGSN	No	[T2] chapter– 4,
32.	3G-GGSN	No	[R1] chapter–2
33.	SMS-GMSC/SMS-IWMSC	No	
34.	Firewall,	No	
35.	DNS/DHCP-High speed Downlink packet access (HSDPA)	No	
36.	LTE network architecture and protocol.	No	
UNIT 5 40	G NETWORKS		
37.	Introduction – 4G vision	No	
38.	4G features and challenges	No	1
39.	Applications of 4G – 4G Technologies	No	1
40.	Multicarrier Modulation	No	1
41.	Smart antenna techniques	No	[T2] chapter– 5,6
42.	OFDM-MIMO systems	No	[R1] chapter–7
43.	Adaptive Modulation	No	1
44.	coding with time slot scheduler	No	1

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /Seminar/online test/quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: Mr.Srinivasan, Assistant Professor

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

a. An ability to apply knowledge of mathematics, science, and engineering

b. An ability to design and conduct experiments, as well as to analyze and interpret data

c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints

such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering. **PEO3: PROFESSIONALISM**

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

COURSE TEACHER	SIGNATURE
MR.SRINIVASAN	
MS G.ANGELO VIRGIN	

Course Coordinator

HOD/ECE